Abstract

Traditional herbal medicines have been reported to possess significant bioactivities. In this investigation, a combined strategy using both phytochemical and biological approaches was conducted to discern the effective components of licorice, a widely used herbal medicine. Altogether, 122 compounds (1-122), including six new structures (1-6), were isolated and identified from the roots and rhizomes of Glycyrrhiza uralensis (licorice). These compounds were then screened using 11 cell- and enzyme-based bioassay methods, including Nrf2 activation, NO inhibition, NF-κB inhibition, H1N1 virus inhibition, cytotoxicity for cancer cells (HepG2, SW480, A549, MCF7), PTP1B inhibition, tyrosinase inhibition, and AChE inhibition. A number of bioactive compounds, particularly isoprenylated phenolics, were found for the first time. Echinatin (7), a potent Nrf2 activator, was selected as an example for further biological work. It attenuated CCl4-induced liver damage in mice (5 or 10 mg/kg, ip) and thus is responsible, at least in part, for the hepatoprotective activity of licorice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.