Abstract

Activation of nuclear factor erythroid-2-related factor 2 (Nrf2) is a crucial cellular defense mechanisms against oxidative stress and also an effective means to decrease the risk of oxidative stress-related diseases including cancer. Thus, identifying novel Nrf2 activators is highly anticipated. Inspired from [6]-shogaol (6S), an active component of ginger, herein we developed a novel potent Nrf2 activator, (1E,4E)-1-(4-hydroxy-3-methoxyphenyl)-7-methylocta-1,4,6-trien-3-one (SA) by an electrophilicity-based strategy. Compared with the parent 6S, SA bearing a short but entirely conjugated unsaturated ketone chain manifested the improved electrophilicity and cytoprotection (cell viability for the 10 μM 6S- and SA-treated group being 48.9 ± 5.3% and 76.1 ± 3.2%, respectively) against tert-butylhydroperoxide ( t-BHP)-induced cell death (cell viability for the t-BHP-stimulated group being 42.4 ± 0.4%) of HepG2. Mechanistic study uncovers that SA works as a potent Nrf2 activator by inducing Keap1 modification, inhibiting Nrf2 ubiquitylation and phosphorylating ERK in a Michael acceptor-dependent fashion. Taking 6S as an example, this works illustrates the feasibility and importance of applying an electrophilicity-based strategy to develop Nrf2 activators with dietary molecules as an inspiration due to their low toxicity and extraordinarily diverse chemical scaffolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.