Abstract

Bayesian inference and bounded rational decision-making require the accumulation of evidence or utility, respectively, to transform a prior belief or strategy into a posterior probability distribution over hypotheses or actions. Crucially, this process cannot be simply realized by independent integrators, since the different hypotheses and actions also compete with each other. In continuous time, this competitive integration process can be described by a special case of the replicator equation. Here we investigate simple analog electric circuits that implement the underlying differential equation under the constraint that we only permit a limited set of building blocks that we regard as biologically interpretable, such as capacitors, resistors, voltage-dependent conductances and voltage- or current-controlled current and voltage sources. The appeal of these circuits is that they intrinsically perform normalization without requiring an explicit divisive normalization. However, even in idealized simulations, we find that these circuits are very sensitive to internal noise as they accumulate error over time. We discuss in how far neural circuits could implement these operations that might provide a generic competitive principle underlying both perception and action.

Highlights

  • The competition for limited resources is a central theme in biology

  • The competition for limited resources enforces the process of natural selection, where differential reproductive success of different genotypes lets some genotypes increase their share in the overall population, while others are driven to extinction [5]

  • This process can be modeled by the replicator equation that quantifies how the proportion of a particular genotype evolves over time depending on the fitness of all other genotypes, such that genotypes achieving more than the average fitness proliferate, and genotypes that perform below average recede [53,78]

Read more

Summary

Introduction

The competition for limited resources enforces the process of natural selection, where differential reproductive success of different genotypes lets some genotypes increase their share in the overall population, while others are driven to extinction [5]. This process can be modeled by the replicator equation that quantifies how the proportion of a particular genotype evolves over time depending on the fitness of all other genotypes, such that genotypes achieving more than the average fitness proliferate, and genotypes that perform below average recede [53,78]. A quantitatively wellstudied example is the random-dot motion paradigm [11,29], where subjects observe a cloud of randomly moving dots with

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.