Abstract

A single-stranded human telomere DNA sequence can fold into an intramolecular G-quadruplex structure, which has been shown to inhibit telomerase activity. Small molecules that selectively target and stabilise the G-quadruplex structure have been proposed as potential anticancer drugs. In this study, we analysed the properties of binding of malachite green, a cationic triphenylmethane dye, to the G-quadruplex of d[(T2AG3)4] by UV spectroscopy of thermal melting analysis, a competitive equilibrium dialysis assay, and absorption and circular dichroism spectroscopies. When binding to malachite green, the quadruplex structure that formed in the presence of K+ ions was stabilised with an increase in melting temperatures by 6 °C. Malachite green showed selective binding to the G-quadruplex in the presence of duplex and single-stranded DNAs, owing to which it presents higher potential for anticancer therapy, compared to other triphenylmethane dyes. The induced signals of circular dichroism indicate that the binding mode of malachite green involves intercalation between adjacent guanine tetrads of the G-quadruplex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.