Abstract
Though porous anodic aluminum oxide has been the subject of considerable research since the 1950s, little attention has been devoted to the characterization of the self-organization of the pore structures, and fewer of these studies have focused on anodization of thin films. The degree to which these structures self-organize, however, could play a vital role in future applications of porous anodic aluminum oxide. In this study a model is developed to describe pore ordering in thin anodized aluminum films. The model is based on a radial distribution function approach to describe the interpore spacings. Idealized one-dimensional and two-dimensional (2D) radial distribution functions are combined by linear superposition to approximate experimental radial distribution functions. Using these radial distribution functions, an order parameter is developed and an improved definition of pore spacing is constructed. This method confirms that the oxide initially forms with a highly frustrated porous structure and reorganizes toward greater 2D order as the oxide grows into the film.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have