Abstract
Short-term length change isotherms (SLCIs) and water vapor sorption isotherms are useful to eliminate the effects of the colloidal features of C-S-H. SLCIs of hardened cement pastes initially conditioned by drying to equilibrium at different relative humidities (RHs) were measured over a complete RH loop between 5% and 98%. Based on the correlation between incremental thickness of adsorption and incremental strain from 40% to 98% RH, the basal spacing of C-S-H above 40% RH appears to increase further with increasing water vapor sorption. However, no correlation of these values was found from 5% to 40% RH and the basal spacing is considered stable in this domain. These properties of C-S-H are directly related to its isothermal volume change as a function of RH. It can be concluded that the dominant shrinkage driver above 40% RH is disjoining or hydration pressure and that below 40% RH is change in surface energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.