Abstract
AbstractWater repellency (WR) significantly affects the hydraulic behavior of soils. Although WR often is regarded as a phenomenon with implications for dry soils, it is prevalent at water contents (w) exceeding the wilting point water content. Because the measurement of the WR–w relationship is laborious, alternative more time‐efficient methods are desirable to estimate parameters of the WR‐w curve. Using 32 high organic carbon (OC) soils from Denmark and South Greenland, we characterized the water vapor sorption isotherms (WSIs), investigated the interrelated effects of OC and clay contents on WSIs and the WR–w relationship, and further evaluated if parameters of the WR‐w curve may be derived directly from WSIs. The samples exhibited OC and clay contents ranging from 0.014 to 0.369 kg kg–1 and from 0.02 to 0.16 kg kg–1, respectively. The WSIs measured for relative humidity (RH) values between 3 and 93%, were strongly hysteretic, were OC dependent, and could be accurately characterized with the Guggenheim, Anderson, and de Boer model. Further, the WRarea and wnon parameters, derived from WR measured for several w, were well estimated with linear regressions based on OC content and multiple linear regressions based on OC and clay contents. Estimations for WRarea and wnon based on the WSI parameter wm‐a were superior to OC and clay content. Finally, we established mathematical expressions that estimate WRarea or wnon from any air‐dry w obtained from either the desorption or adsorption isotherms between 10 and 90% RH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.