Abstract

This paper is concerned with a diffusive Leslie-Gower predator-prey system with ratio dependent Holling type III functional response subject to Neumann boundary conditions. By linearizing the system at the positive constant steady-state solution and analyzing the associated characteristic equation in detail, local stability, existence of a Hopf bifurcation at the coexistence of the equilibrium and stability of bifurcating periodic solutions of the system in the absence of diffusion are studied. Furthermore, Turing instability and Hopf bifurcation analysis for the system with diffusion are studied. Finally, numerical simulations are provided in order to verify our theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call