Abstract
A series of bifunctional catalysts, MoS2/Al2O3 (70 wt.%), zeolite (30 wt.%) (zeolite-ZSM-5, ZSM-12, and ZSM-22), and silica aluminophosphate SAPO-11, were synthesized for hydroconversion of methyl palmitate (10 wt.% in dodecane) in a trickle-bed reactor. Mo loading was about 7 wt.%. Catalysts and supports were characterized by different physical-chemical methods (HRTEM-EDX, SEM-EDX, XRD, N2 physisorption, and FTIR spectroscopy). Hydroprocessing was performed at a temperature of 250-350 °C, hydrogen pressure of 3.0-5.0 MPa, liquid hourly space velocity (LHSV) of 36 h-1, and an H2/feed ratio of 600 Nm3/m3. Complete conversion of oxygen-containing compounds was achieved at 310 °C in the presence of MoS2/Al2O3-zeolite catalysts; the selectivity for the conversion of methyl palmitate via the 'direct' hydrodeoxygenation (HDO) route was over 85%. The yield of iso-alkanes gradually increases in order: MoS2/Al2O3 < MoS2/Al2O3-ZSM-12 < MoS2/Al2O3-ZSM-5 < MoS2/Al2O3-SAPO-11 < MoS2/Al2O3-ZSM-22. The sample MoS2/Al2O3-ZSM-22 demonstrated the highest yield of iso-alkanes (40%). The hydroisomerization activity of the catalysts was in good correlation with the concentration of Brønsted acid sites in the synthesized supports.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have