Abstract
Principal component analysis (PCA) has been very successful in image recognition. Recent research on PCA-based methods has mainly concentrated on two issues, namely: 1) feature extraction and 2) classification. This paper proposes to deal with these two issues simultaneously by using bidirectional PCA (BD-PCA) supplemented with an assembled matrix distance (AMD) metric. For feature extraction, BD-PCA is proposed, which can be used for image feature extraction by reducing the dimensionality in both column and row directions. For classification, an AMD metric is presented to calculate the distance between two feature matrices and then the nearest neighbor and nearest feature line classifiers are used for image recognition. The results of the experiments show the efficiency of BD-PCA with AMD metric in image recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.