Abstract

There are several methods to recognize and reconstruct a human face image. The principal component analysis (PCA) is a successful approach because of its effective extraction of the global feature and excellent reconstruction of face image. However, the crucial shortcomings of PCA are its low recognition rate and overfitting of feature extraction which leads to the dependence of training data on training samples. In this paper, a modified two-dimension principal component analysis (2DPCA) and bidirectional principal component analysis (BDPCA) methods based on quaternion matrix are proposed to recognize and reconstruct a color face image. In these methods, the spatial distribution information of color images is used to represent a color face, and the 2DPCA or BDPCA feature of color face image is extracted by reducing the dimensionality in both column and row directions. A method obtaining orthogonal eigenvector set of quaternion matrix is proposed. Numerous experiments show that the present approach based on quaternion matrix can effectively smooth the overfitting issue and substantially enhance the recognition rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.