Abstract
In this correspondence, we develop a novel approach that provides effective and robust segmentation of color images. By incorporating the advantages of the mean shift (MS) segmentation and the normalized cut (Ncut) partitioning methods, the proposed method requires low computational complexity and is therefore very feasible for real-time image segmentation processing. It preprocesses an image by using the MS algorithm to form segmented regions that preserve the desirable discontinuity characteristics of the image. The segmented regions are then represented by using the graph structures, and the Ncut method is applied to perform globally optimized clustering. Because the number of the segmented regions is much smaller than that of the image pixels, the proposed method allows a low-dimensional image clustering with significant reduction of the complexity compared to conventional graph-partitioning methods that are directly applied to the image pixels. In addition, the image clustering using the segmented regions, instead of the image pixels, also reduces the sensitivity to noise and results in enhanced image segmentation performance. Furthermore, to avoid some inappropriate partitioning when considering every region as only one graph node, we develop an improved segmentation strategy using multiple child nodes for each region. The superiority of the proposed method is examined and demonstrated through a large number of experiments using color natural scene images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.