Abstract

High energy density, power density and long cycle life are the ultimate goals of lithium ion batteries (LIBs) to meet the need of energy storage. However, it is still a challenge to achieve them at the same time. In this work, Bi2Se0.5Te2.5/S, N-doped reduced graphene oxide (rGO) nanosheets composite has been synthesized by solvothermal method and investigated as anode materials for LIBs. The nanosheets are triumplantly fixed on rGO. Nitrogen doping can improve the electrical conductivity, while sulfur provide more active sites. The Bi2Se0.5Te2.5/S, N-rGO exhibits superior electrochemical performance. The specific discharge capacity of the Bi2Se0.5Te2.5/S, N-rGO composites at 100 mA g −1 is 500 mAh g −1after 200 cycles, and which is still on the rise. Dynamics analysis clearly shows that the lithium storage of the as-prepared samples is on account of diffusion process, whose capacitive contribution reaches 92 % of the total charge storage at a scanning rate of 1.0 mV s −1, and contributes to excellent cycling performance at high current densities. This work shows that Bi2Se0.5Te 2.5 /S, N-rGO has broad application prospects in LIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.