Abstract

Numerical optimization is one of the well-known problems in computer science. Day by day, new methods are developed by many researchers. Recently, optimization became an essential task for many disciplines, such as engineering, medicine, management and others. In many cases, optimization problems may require fast and efficient algorithms for real-time implementations. In this paper, a simple, fast and feasible algorithm is presented for the optimization of both uni-modal and multi-modal benchmark functions. A population based Bi-Attempted Based Optimization Algorithm (ABaOA) is a stochastic search method which searches a solution space with two fixed step-size displacement parameters and two mutation operators. The proposed algorithm is derived from Base Optimization Algorithm (BaOA) which uses basic arithmetic operations. The performance of ABaOA is tested on twenty well-known benchmark functions and the results are statistically compared with the seven well-known stochastic optimization algorithms. Three different statistical analyses were done on the results obtained from the ABaOA. Two non-parametric statistical comparisons with the mean values are performed by using Sign and Wilcoxon tests. The non-parametric statistical multiple comparisons of the proposed algorithm is performed by using the Friedman test. The non-parametric Friedman test of differences among repeated measures of these algorithms was conducted and referred a Chi-square value of 67.337, which was significant (p<0.05). Wilcoxon non-parametric pairwise comparison test was applied to analyze the difference of ABaOA statistically among the other algorithms. The test indicates that the introduced algorithm is statistically significant than other algorithms with a level of significance p < 0.05. The experimental results also show that the ABaOA is clearly superior to the compared stochastic optimization algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.