Abstract

AbstractMicrobial community composition varies across stream habitats. However, there is little understanding of how varying hydraulic and geomorphic factors influence microbial distribution along a succession of pools. This study examines how substrate, geomorphological and hydraulic habitat variables may drive bacterial community composition within different stream pool habitats of a temperate headwater stream. Microbial community structures from rock biofilm and sediment samples within each of the 10 selected stream pools of White Clay Creek, PA, were determined by high‐throughput sequencing of 16S rRNA genes. The grain size distribution, organic matter content, streamflow velocity, temperature regime and morphology of each pool were quantified to characterize the pool habitats' variability. Multivariate statistical analysis revealed significant differences in the microbial community composition linked to the substrate's stability within the pool units. Indeed, soft and more mobile sediments were dominated by heterotrophic bacteria, while photosynthetic microorganisms (e.g., microalgae and cyanobacteria) were mainly found on rock biofilm. The difference in the distribution of bacterial communities can be explained by variations in the local hydraulic (i.e., depth and velocity) and the thermal conditions (daily fluctuation, min and max). These results highlight the geomorphological and hydrologic drivers for small‐scale diversity in bacterial communities and provide a better understanding of how maintaining and promoting variability in streambed physical properties may enhance microbial diversity. Better integration of these drivers into stream restoration practices will allow the inclusion of microorganisms, the trophic levels that are usually overlooked but still play critical roles in stream ecology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.