Abstract
We recently described a novel form of stress-associated bidirectional plasticity at GABA synapses onto hypothalamic parvocellular neuroendocrine cells (PNCs), the apex of the hypothalamus-pituitary-adrenal axis. This plasticity may contribute to neuroendocrine adaptation. However, this GABA synapse plasticity likely does not translate into a simple more and less of inhibition because the ionic driving force for Cl(-) , the primary charge carrier for GABAA receptors, is dynamic. Specifically, stress impairs a Cl(-) extrusion mechanism in PNCs. This not only renders the steady-state GABA response less hyperpolarizing but also makes PNCs susceptible to the activity-dependent accumulation of Cl(-) . Accordingly, GABA synapse plasticity impacts both the robustness of GABA voltage response and dynamic Cl(-) loading, imposing nonlinear influences on PNC excitability during circuit activities. This theoretical consideration predicts roles for GABA transmission far more versatile than canonical inhibition. We propose potential impacts of GABA synapse plasticity on the experience-dependent fine-tuning of neuroendocrine stress responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.