Abstract

Abstract Beryllium has an extraordinary combination of material properties such as low density, high melting point, high specific heat capacity, high Young's modulus, high hardness and low atomic number. The conventional investigation of the mechanical properties of Be and Be alloys is only possible under difficult conditions due to the material's toxicity and the resulting restrictions on sample manufacturing. These limitations are avoided, at least partly, when using a depth-sensing hardness test, also called nanoindentation, where the resulting contamination with Be dusts is limited to a controllable extent. For this work, technically pure Be from X-ray exit windows of high-performance X-ray tubes was chosen and its mechanical properties were characterized by means of nanoindentation. This contribution will focus in detail on the preparation of the material as well as the following microstructural characterization by means of light microscopy and scanning electron microscopy. The mechanical results of local nanoindentation will be correlated with the microstructure and compared with known values found in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.