Abstract

Beryllium has widespread uses in aerospace industry as it has attractive mechanical properties, a high melting point (1289 °C), a low density (1.85 g/cc), high specific heat capacity and thermal conductivity. It has a hexagonal close packed (hcp) structure and due to its low neutron cross section it is widely used for nuclear applications. To achieve the required mechanical properties beryllium is produced by vacuum hot pressing in the temperature range 1000 to 1100°C, using a high purity and fine grained beryllium powder. To get stress relief, the material is subsequently heat treated at 800°C; this also serves to remove elemental aluminium at grain boundaries in material structure, by converting it to the intermetallic form AlFeBe4. A proper balance between Fe and Al is required to avoid ‘hot shortness’ due to the presence of elemental aluminium at the grain boundaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call