Abstract

Knitted fabrics with easily deformable loop structure have the potential in the development of shape memory polymeric composites with large recovery deformations. The knitted fabric reinforced shape memory epoxy polymer composites (SMPC) were prepared in this work. The effects of loop densities, orientations and bending radii on shape memory properties of SMPC were investigated. The shape fixity ratio and shape recovery ratio of SMPC subjected to U-shaped bending radius of 5 mm are above 98 %. The shape recovery force of SMPC can reach up to 5.9 N. The thermodynamic properties of SMP were also characterized to obtain mechanical parameters and a user-defined material subroutine (UMAT) of shape memory epoxy polymer (SMEP) was written. Based on viscoelastic theory and the multi-scale geometrical structures, the macroscopic homogeneous thermodynamic model and mesoscopic thermodynamic model of knitted fabric reinforced SMPC were established to study the macro-scale stress distribution and meso-scale deformation evolution during shape memory process, respectively. The neutral surface position of SMPC during bending deformation is offset inner. The unique anisotropic loop structure of knitted fabric determines the shape memory behavior of the SMPC. Finally, micro-CT characterizations of knitted fabric reinforced SMPC were conducted to further understand the loop deformation mechanism during shape memory process. This study will provide important theoretical and technical support for large deformation structure design and deformation prediction of smart composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call