Abstract

Bamboo-based composites have been commonly used in engineering applications as a renewable carbon recycling material. Despite its prevalent use, bamboo possesses inherent drawbacks, including flammability, moisture absorption, and susceptibility to microbial corrosion, significantly diminishing the service life of the composites as outdoor materials. Hence, a straightforward synthesis strategy was used to prepare multifunctional bamboo-based fiber composites (BFCs). This involved constructing a three-dimensional (3D) network interface within the bamboo via the combination of mechanical and chemical pretreatments, including alkali treatment, in-situ reduction, impregnation, lamination, and hot pressing. The obtained dense structure, together with the successful incorporation of functional AgNPs, enables the composites to exhibit outstanding mechanical properties (328 MPa cm3 g−1 of tensile specific strength). Moreover, the bamboo-based composite shows good flame retardancy (self-extinguishing within 5 s after ignition), improved thermal conductivity (0.258 W m−1 K−1), a self-cleaning ability, and commendable antibacterial activity against two common pathogenic bacterial (E. coli and S. aureus). This versatile bamboo-based fiber composite material holds promise for diverse outdoor applications, including roofs, wall panels, outdoor flooring, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.