Abstract

Based on 280 reference vertical transition energies of various excited states (singlet, triplet, valence, Rydberg, n → π*, π → π*, and double excitations) extracted from the QUEST database, we assess the accuracy of complete-active-space third-order perturbation theory (CASPT3), in the context of molecular excited states. When one applies the disputable ionization-potential-electron-affinity (IPEA) shift, we show that CASPT3 provides a similar accuracy as its second-order counterpart, CASPT2, with the same mean absolute error of 0.11eV. However, as already reported, we also observe that the accuracy of CASPT3 is almost insensitive to the IPEA shift, irrespective of the transition type and system size, with a small reduction in the mean absolute error to 0.09eV when the IPEA shift is switched off.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.