Abstract
Central injections of serotonin (5-HT) in food-deprived/refed pigeons evoke a sequence of hypophagic, hyperdipsic and sleep-like responses that resemble the postprandial behavioral sequence. Fasting-refeeding procedures affect sleep and drinking behaviors "per se". Here, we describe the behavioral profile and long-term food/water intake following intracerebroventricular (ICV) injections of 5-HT (50, 150, 300 nmol/2 μl) in free-feeding/drinking pigeons. The patterns of Fos activity (Fos+) in serotonergic (immunoreactive to tryptophan hydroxylase, TPH+) neurons after these treatments were also examined. 5-HT ICV injections evoked vehement drinking within 15 min, followed by an intense sleep. These effects did not extend beyond the first hour after treatment. 5-HT failed to affect feeding behavior consistently. The density of double-stained (Fos+/TPH+) cells was examined in 6 brainstem areas of pigeons treated with 5-HT (5-HTW) or vehicle. Another group received 5-HT and remained without access to water during 2h after treatment (5-HTØ). In the pontine raphe, Fos+ density correlated positively to sleep, and increased in both the 5-HTW and 5-HTØ animals. In the n. linearis caudalis, Fos+ and Fos+/TPH+ labeling was negatively correlated to sleep and was reduced in 5-HTØ animals. In the A8 region, Fos+/TPH+ labeling was reduced in 5-HTW and 5-HTØ animals, was positively correlated to food intake and negatively correlated to sleep. These data indicate that hyperdipsic and hypnogenic effects of ICV 5-HT in pigeons may result from the inhibition of a tonic activity of serotonergic neurons, which is possibly relevant to the control of postprandial behaviors, and that these relationships are shared functional traits of the serotonergic circuits in amniotes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have