Abstract
Serotonergic neurons of the medullary raphe nuclei are strongly stimulated by acidosis [1,2], and are putative central respiratory chemoreceptors. We have examined the relationship between serotonergic neurons and blood vessels in the adult rat brain by using immunohistochemistry for tryptophan hydroxylase (TpOH) and injections of arteries with fluorescent albumin in gelatin. Serotonergic neurons within the raphe were closely associated with the basilar artery and its large penetrating branches. There were also homologous serotonergic neurons near large arteries of the rostral and caudal ventrolateral medullary surface (VLMS). We propose that serotonergic neurons on the VLMS contributed to the ventila-tory response to application of acidic solution in classical in vivo experiments that localized the chemoreceptors to that region. However, these neurons may not be specifically sensing CSF pH, but rather the PCO2 of blood in proximal arteries that happen to be located adjacent to the CSF space. In addition, a large number of homologous chemosensitive neurons are also located within the midline raphe nuclei. Perforated patch clamp recordings were made from raphe neurons in tissue culture, and the responses to respiratory acidosis, metabolic acidosis and isohydric hypercapnia were quantified. From a baselin firing rate of 0.2 Hz to 1.5 Hz, an increase in PCO2 from 5% to 9% and a decrease in pHo from 7.4 to 7.17 (at a constant [NaHCO3] of 26 mM) induced a mean increase in firing rate of 1.38 Hz (to 285% of control; n = 11). Metabolic acidosis (5% PCO2, 15 mM [NaHCO3], pHo 7.16) induced a mean increase in firing rate of 1.15 Hz (to 309% of control). Isohydric hypercapnia (9% PCO2, 40 mM [NaHCO3], at constant pHo) induced a mean increase in firing rate of 1.01 Hz (to 384% of control). These neurons also increased their firing rate in response to a decrease in pHo in the absence of CO2 and bicarbonate (in HEPES buffer).The only acid/base change that is shared by these four manipulations is a decrease in pHi, suggesting that this is the primary stimulus for these neurons – as is true for other chemosensitive neurons, including carotid body glomus cells. Using voltage clamp recordings, we have identified a novel ionic current in serotonergic neurons that is highly pH sensitive. This current was activated by calcium influx during depolarization. The major charge carrier was K+ under physiological conditions, but it also had a high permeability to Na+, with a permeability ratio for K+:Na+ of 4:1. It was not blocked by apamin (400 nM), charybdotoxin (240 nM), or TEA (15 mM). The current was extremely sensitive to changes in pH centered near 7.3. The current at pH7.61 was 95% of the maximum current, while the current at pH 6.99 was 2% of the maximum. To our knowledge, a current with these properties has not been reported previously. This current would be predicted to induce changes in membrane potential that have been observed during whole-cell current clamp recordings. Serotonergic medullary raphe neurons are strongly stimulated by a decrease in pHi due to the presence of a novel highly pH-sensitive calcium-activated cation channel. The degree of chemosensitivity of these neurons is large enough to make a major contribution to the changes in ventilation observed in whole animals in response to respiratory acidosis. The location of serotonergic neurons next to blood vessels and their widespread projections suggest that these neurons are chemoreceptors that modulate a variety of brain functions, including but not limited to respiratory control, and thus contribute to pH homeostasis.
Highlights
To be effective, inspiratory muscles on the left and right sides must contract together
We have found that a prominent gap in the column of ventral respiratory group (VRG) The nucleus tractus solitarii (NTS) relays information from primary related parvalbumin cells [2] likely corresponds to the pBc since visceral receptors to the central nervous system and is critically parvalbumin cells are rare in this zone and never co-localize with involved in the reflex control of autonomic functions
The specific protein(s) necessary for longterm facilitation (LTF) is unknown, we recently found that episodic hypoxia and LTF are associated with elevations in ventral spinal concentrations of brain derived neurotrophic factor (BDNF)
Summary
Inspiratory muscles on the left and right sides must contract together. The left and right halves of the diaphragm are synchronised because a bilateral population of medullary premotor neurones [1] simultaneously excites left and right phrenic motoneurones. Transection studies demonstrate that each side of the brainstem is capable of generating respiratory rhythm independently [2], so that left and right medullary inspiratory neurones must themselves be synchronised. The interconnections and common excitation that accomplish such synchronisation are unknown in rats. The respiratory rhythm of hypoglossal (XII) nerve discharge in transverse medullary slice preparations from neonatal rats is thought to originate in the region of the ventral respiratory group (VRG); generated there by a combination of “pacemaker” neurones [1] and their interactions with other respiratory neurones. Our goal was to discover interconnections between left and right VRG neurones as well as their connections to XII motoneurones
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.