Abstract

Beam wander of a finite optical beam propagating in a turbulent medium is investigated theoretically. Using the optical analog of Ehrenfest’s theorem, it is shown that the centroid of a finite beam propagates as a paraxial ray in a certain effective refractive index that depends on the irradiance profile of the beam. Ray statistics in the effective refractive index are studied for arbitrary irradiance profiles and new results are obtained for the variance of spot displacement and beam angle of arrival. These results are then applied to the particular cases of focused and collimated gaussian beams in atmospheric turbulence with a modified Von Karman power spectrum to yield the functional dependence of spot dancing and angle-of-arrival statistics on the inner and outer scales of turbulence and on the Fresnel number for focused gaussian beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.