Abstract

Based on the extended Huygens–Fresnel integral, analytical formulas for the cross-spectral density, mean-squared beam width and angular spread of a partially coherent elegant Hermite–Gaussian (HG) beam in turbulent atmosphere are derived. The evolution properties of the average intensity, spreading and directionality of a partially coherent elegant HG beam in turbulent atmosphere are studied numerically. It is found that the partially coherent elegant HG beam with smaller initial coherence width, larger beam order and longer wavelength is less affected by the atmospheric turbulence. Compared to the partially coherent standard HG beam, the partially coherent elegant HG beam is less affected by turbulence under the same condition. Furthermore, it is found that there exist equivalent partially coherent standard and elegant HG beams, equivalent fully coherent standard and elegant HG beams, and an equivalent Gaussian–Schell-model beam may have the same directionality as a fully coherent Gaussian beam whether in free space or in turbulent atmosphere. Our results can be utilized in short and long atmospheric optical communication systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.