Abstract
For the study of charmonium resonances above and including the χ c0 , Fermilab experiment E-835 required an intense and stochastically cooled antiproton beam with kinetic energies from 8 GeV (the injection energy of the Accumulator) down to 4 GeV . We developed a scheme in which the momentum compaction factor of the machine was changed as the antiprotons were decelerated, so that the energies of interest to the experiment were kept above transition. The scheme was used during the E-835 10-month run of the year 2000. Here we describe the design criteria, operational procedures and diagnostic tools we used to exploit the machine as an efficient antiproton decelerator. The machine performance during data taking is also discussed, in relation to the main experimental requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.