Abstract
Publication bias and questionable research practices have long been known to corrupt the published record. One method to assess the extent of this corruption is to examine the meta-analytic collection of significant p values, the so-called p-curve (Simonsohn, Nelson, & Simmons, 2014a). Inspired by statistical research on false-discovery rates, we propose a Bayesian mixture model analysis of the p-curve. Our mixture model assumes that significant p values arise either from the null-hypothesis H₀ (when their distribution is uniform) or from the alternative hypothesis H1 (when their distribution is accounted for by a simple parametric model). The mixture model estimates the proportion of significant results that originate from H₀, but it also estimates the probability that each specific p value originates from H₀. We apply our model to 2 examples. The first concerns the set of 587 significant p values for all t tests published in the 2007 volumes of Psychonomic Bulletin & Review and the Journal of Experimental Psychology: Learning, Memory, and Cognition; the mixture model reveals that p values higher than about .005 are more likely to stem from H₀ than from H₁. The second example concerns 159 significant p values from studies on social priming and 130 from yoked control studies. The results from the yoked controls confirm the findings from the first example, whereas the results from the social priming studies are difficult to interpret because they are sensitive to the prior specification. To maximize accessibility, we provide a web application that allows researchers to apply the mixture model to any set of significant p values. (PsycINFO Database Record
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.