Abstract

Goal: To develop a computationally efficient and unbiased synthetic data generator for large-scale in silico clinical trials (CTs). Methods: We propose the BGMM-OCE, an extension of the conventional BGMM (Bayesian Gaussian Mixture Models) algorithm to provide unbiased estimations regarding the optimal number of Gaussian components and yield high-quality, large-scale synthetic data at reduced computational complexity. Spectral clustering with efficient eigenvalue decomposition is applied to estimate the hyperparameters of the generator. A case study is conducted to compare the performance of BGMM-OCE against four straightforward synthetic data generators for in silico CTs in hypertrophic cardiomyopathy (HCM). Results: The BGMM-OCE generated 30000 virtual patient profiles having the lowest coefficient-of-variation (0.046), inter- and intra-correlation differences (0.017, and 0.016, respectively) with the real ones in reduced execution time. Conclusions: BGMM-OCE overcomes the lack of population size in HCM which obscures the development of targeted therapies and robust risk stratification models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.