Abstract
An efficient and accurate approach is proposed for forecasting the Value at Risk (VaR) and Expected Shortfall (ES) measures in a Bayesian framework. This consists of a new adaptive importance sampling method for the Quick Evaluation of Risk using Mixture of t approximations (QERMit). As a first step, the optimal importance density is approximated, after which multi-step ‘high loss’ scenarios are efficiently generated. Numerical standard errors are compared in simple illustrations and in an empirical GARCH model with Student-t errors for daily S&P 500 returns. The results indicate that the proposed QERMit approach outperforms alternative approaches, in the sense that it produces more accurate VaR and ES estimates given the same amount of computing time, or, equivalently, that it requires less computing time for the same numerical accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.