Abstract

New mixed-integer programming models are proposed for deterministic batch or cyclic scheduling in flow shops with parallel machines and finite in-process buffers. Models for scheduling with all machines continuously available for processing throughout the entire scheduling horizon as well as for scheduling with an arbitrary pattern of machine availability due to pre-scheduled downtime events are provided. Numerical examples modelled after real-world flexible flow shop scheduling in electronics manufacturing are presented, and to compare the batch and cyclic schedules with continuous or with limited machine availability, results of computational experiments are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.