Abstract

ABSTRACT The dual-resource-constrained re-entrant flexible flow shop scheduling problem represents a specialised variant of the flow shop scheduling problem, inspired by real-world scenarios in screen printing industries. Besides the well-known flow shop structure, stages consist of identical parallel machines and operations may re-enter the same stage multiple times before completion. Moreover, each machine must be operated by a skilled worker, making it a dual-resource-constrained problem according to the existing literature. The objective is to minimise the total length of the production schedule. To address this problem, our study employs two methods: a constraint programming model and a hybrid genetic algorithm with a single-level solution representation and an efficient decoding heuristic. To evaluate the performance of our methods, we conducted a computational study using different problem instances. Our findings demonstrate that the proposed hybrid genetic algorithm consistently delivers high-quality solutions, particularly for large instances, while also maintaining a short computational time. Additionally, our methods improve existing benchmark results for instances from the literature for a subclass of the problem. Furthermore, we provide managerial insights into how dual-resource constraints affect the solution quality and the efficiency associated with different workforce configurations in the described production setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.