Abstract
Recently solar power has increasingly been used to generate electricity worldwide through photovoltaic (PV) systems. The electrical performance of each PV module plays major role in maximum power transfer. In order to absorb the maximum power from such systems, optimal output voltage and current should be obtained from the I–V characteristics of previously developed models. It is fact that, this is a relatively uneasy task because manufacturer's data sheet is confined to limited number of measured values. In this study, the hybrid genetic algorithms method is employed to extract basic parameters of the ideality factor and the parasitic resistances in the single diode model to transfer maximum power from a PV module to a resistive electrical load. Optimal parameters in the circuital model are found using the I–V characteristic of a silicon diode expressed by the Lambert W function. The results are meaningful and encouraging for maximum power transfer under certain conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.