Abstract

—This article presents a thorough comparative analysis study for various kinds of single-diode model based photovoltaic power source. The main target is to explore the effect of increasing the embedded degree of complexity of the single-diode model on the simulated behavior of a particular photovoltaic module by comparing the dynamic performance of such photovoltaic models with the experimental data from the manufacturer's data sheet under varying atmospheric conditions. The relative errors between each photovoltaic single-diode model output and the experimentally validated data are computed at three indicative points, namely open-circuit voltage, short-circuit current, and maximum power point. The result of this comparison leads to determining the best photovoltaic single diode module—the one that is more suitable than the others in the context of single diode model—to be applied in different power system applications irrespective of changing environmental conditions over different periods of the day. The comparison study in this article concludes by determining the relevant single-diode model at low, medium, and high temperatures and irradiance levels as well as at standard test conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call