Abstract

Here we present the construction and characterization of metagenome assembled genomes (MAGs) from two hot springs residing in the vicinity of Indian Himalayan Geothermal Belt (IHGB). A total of 78 and 7 taxonomic bins were obtained for Old Yume Samdong (OYS) and New Yume Samdong (NYS) hot springs respectively. After passing all the criteria only 21 and 4 MAGs were further studied based on the successful prediction of their 16S rRNA. Various databases were used such as GTDB, Kaiju, EzTaxon, BLAST XY Plot and NCBI BLAST to get the taxonomic classification of various 16S rRNA predicted MAGs. The bacterial genomes found were from both thermophilic and mesophilic bacteria among which Proteobacteria, Chloroflexi, Bacteroidetes and Firmicutes were the abundant phyla. However, in case of OYS, two genomes belonged to archaeal Methanobacterium and Methanocaldococcus. Functional characterization revealed the richness of CAZymes such as Glycosyl Transferase (GT) (56.7%), Glycoside Hydrolase (GH) (37.4%), Carbohydrate Esterase family (CE) (8.2%), and Polysaccharide Lyase (PL) (1.9%). There were negligible antibiotic resistance genes in the MAGs however, a significant heavy metal tolerance gene was found in the MAGs. Thus, it may be assumed that there is no coexistence of antibiotic and heavy metal resistance genes in these hot spring microbiomes. Since the selected hot springs possess good sulfur content thus, we also checked the presence of genes for sulfur and nitrogen metabolism. It was found that MAGs from both the hot springs possess significant number of genes related to sulfur and nitrogen metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call