Abstract

As antibiotics and heavy metals are often mixed in animal feed, their excretion through animal feces would cause bacteria to produce antibiotic resistance genes and heavy metal resistance genes. The pollution of antibiotics resistance gene and heavy metal resistance gene has become a major threat to human health and ecological environment. From the perspective of bacterial evolution, we proposed the importance of bacterial long-term evolution experiments about antibiotics and heavy metals. There is a complex co-selection resistance between antibiotic resistance genes and heavy metal resistance genes, which interact with each other and collectively determine the environmental behavior of bacteria. Horizontal transfer of resistance gene increases its variability in the environment. Mobile genetic elements play an important role in horizontal transfer of resistance gene. As for resistance gene pollution control, advanced oxidation technology has a good resistance gene removal effect. The UV/TiO2 oxidation technology can reduce the abundance of antibiotic resistance genes of 4.7-5.8 log, with an efficiency of >99.99%. Other control strategies, such as the use of Macleaya cordata extract and the combination of bacteriophage and antibiotics, are also of significance for controlling resistance genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call