Abstract

Gold Nanoparticles (AuNPs) have gained significant attention in biosensor development due to their unique physical, chemical, and optical properties. When incorporated into biosensors, AuNPs offer several advantages, including a high surface area-to-volume ratio, excellent biocompatibility, ease of functionalization, and tunable optical properties. These properties make them ideal for the detection of various biomolecules, including proteins, nucleic acids, and bacterial and viral biomarkers. Traditional methods for detecting bacteria and viruses, such as RT-PCR and ELISA, often suffer from complexities, time consumption, and labor intensiveness. Consequently, researchers are continuously exploring novel devices to address these limitations and effectively detect a diverse array of infectious pathogenic microorganisms. In light of these challenges, nanotechnology has been instrumental in refining the architecture and performance of biosensors. By leveraging advancements in nanomaterials and strategies of biosensor fabrication the sensitivity and specificity of biosensors can be enhanced, enabling more precise detection of pathogenic bacteria and viruses. This review explores the versatility of AuNPs in detecting a variety of biomolecules, including proteins, nucleic acids, and bacterial and viral biomarkers. Furthermore, it evaluates recent advancements in AuNPs-based biosensors for the detection of pathogens, utilizing techniques such as optical biosensors, lateral flow immunoassays, colorimetric immunosensors, electrochemical biosensors, and fluorescence nanobiosensors. Additionally, the study discusses the existing challenges in the field and proposes future directions to improve AuNPs-based biosensors, with a focus on enhancing sensitivity, selectivity, and their utility in clinical and diagnostic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.