Abstract

Continental flood basalts are usually regarded as a single tectonomagmatic entity but frequently quoted examples exhibit a variety of tectonic settings. In one well-studied, classic, flood basalt province, the Mesozoic Karoo province of southern Africa, magmatism occurred in the following tectonic settings: (a) continental rifting leading to ocean-floor spreading in the South Atlantic Ocean (Etendeka suite of Namibia); (b) stretched continental lithosphere and rifting not leading directly to ocean-floor formation (Lebombo suite of southeastern Africa); and (c) an a-tectonic, within-plate, continental setting characterized by an absence of faulting or warping (Lesotho highlands and Karoo dolerites of South Africa). By means of spidergrams of the elements Rb, Ba, Th, Nb, K, La, Ce, Sr, Nd, P, Hf, Zr, Sm, Ti, Tb, Y, V, Ni and Cr, uncontaminated tholeiites from (c) above [i.e. the Lesotho-type continental flood basalts (LTCFB)] are compared with mid-ocean ridge basalts (MORB), ocean-island tholeiites (OIT), and tholeiites and calc-alkali basalts from subduction environments. The comparison reveals the LTCFBs are geochemically distinct. The differences are reflected in relative enrichments or depletions of the more incompatible elements (Rb-Ce) to less incompatible elements (Ce-Y), i.e. the overall slope of the spidergrams, and in anomalous enrichments or depletions of one or more of the elements Th, K, Nb, Sr, Ti, Hf, and Zr. The distinctive geochemical character of the Lesotho LTCFBs is interpreted in terms of a lithospheric mantle source for the basalts. This is supported by isotopic data. There are no major geochemical differences between Lesotho CFBs and basalts of the rift-related Etendeka and Lebombo suites, although the latter are somewhat enriched in Rb, Ba and K. However, unlike the Lesotho basalts, the Lebombo and Etendeka basalts are associated with voluminous silicic volcanics or intrusive centres and late-stage dolerites having MORB/OIT (i.e. asthenospheric) geochemical characteristics. The flood basalt/silicic magmatism/late-stage dyke swarm association is characteristic of several rift or thinned lithosphere environments (e.g., Ethiopia, Skye, eastern Greenland) but in many of these the flood basalts have ocean-island basalt (OIT) geochemical characteristics. The Lesotho-type CFB geochemistry is exhibited by the Grande Ronde Basalt of the Columbia River Group (a possible subduction-related flood basalt province) and the basic rocks associated with Mesozoic rifting in the North and South Atlantic. Basalt geochemistry alone is unhelpful in determining the tectonic setting of CFBs although the rift-related environments may be identified by the petrology and geochemistry of the whole igneous suite. A two-source model is proposed for the mantle-derived basic rocks in rift-related CFB provinces. Early enriched basalts are derived from the lithosphere and, following pronounced lithospheric attenuation or rifting, later MORB-like melts are emplaced from the rising asthenosphere. The presence of both Lesotho- and OIT-type geochemical patterns in rift-related CFBs suggests that the lithosphere exhibits different styles of enrichment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.