Abstract

The Noril’sk mining district is located at the northwest margin of the Tunguska basin, in the centre of the 3,000×4,000 km Siberian continental flood basalt (CFB) province. This CFB province was formed at the Permo-Triassic boundary from a superplume that ascended into the geometric centre of the Laurasian continent, which was surrounded by subducting slabs of oceanic crust. We suggest that these slabs could have reached the core–mantle boundary, and they may have controlled the geometric focus of the superplume. The resulting voluminous magma intruded and erupted in continental rifts and related extensive flood basalt events over a 2–4 Ma period. Cu–Ni–PGE sulfide mineralization is found in olivine-bearing differentiated mafic intrusions beneath the flood basalts at the northwestern margin of the Siberian craton and also in the Taimyr Peninsula, some 300 km east of a triple junction of continental rifts, now buried beneath the Mesozoic–Cenozoic sedimentary basin of western Siberia. The Noril’sk-I and Talnakh-Oktyabr’sky deposits occur in the Noril’sk–Kharaelakh trough of the Tunguska CFB basin. The Cu–Ni–PGE-bearing mineralized intrusions are 2–3 km-wide and 20 km-long differentiated chonoliths. Previous studies suggested that parts of the magma remained in intermediate-level crustal chambers where sulfide saturation and accumulation took place before emplacement. The 5–7-km-thick Neoproterozoic to Palaeozoic country rocks, containing sedimentary Cu mineralization and evaporites, may have contributed additional metal and sulfur to this magma. Classic tectonomagmatic models for these deposits proposed that subvertical crustal faults, such as the northeast-trending Noril’sk–Kharaelakh fault, were major trough-parallel conduits providing access for magmas to the final chambers. However, geological maps of the Noril’sk region show that the Noril’sk–Kharaelakh fault offsets the mineralization, which was deformed into folds and offset by related reverse faults, indicating compressional deformation after mineralization in the Late Triassic to Early Jurassic. In addition, most of the intrusions are sills, not dykes as should be expected if the vertical faults were major conduits. A revised tectonic model for the Noril’sk region takes into account the fold structure and sill morphology of the dominant intrusions, indicating a lateral rather than vertical emplacement direction for the magma into final chambers. Taking into account the fold structure of the country rocks, the present distribution of the differentiated intrusions hosting the Noril’sk-I and Talnakh–Oktyabr’sky deposits may represent the remnants of a single, >60 km long, deformed and eroded palm-shaped cluster of mineralized intrusions, which are perceived as separate intrusions at the present erosional level. The original direction of sill emplacement may have been controlled by a northeast-trending paleo-rise, which we suggest is present at the southeastern border of the Noril’sk–Kharaelakh trough based on analysis of the unconformity at the base of the CFB. The mineralized intrusions extend along this rise, which we interpret as a structure that formed above the extensionally tilted block in the metamorphic basement. Geophysical data indicate the presence of an intermediate magma chamber that could be linked with the Talnakh intrusion. In turn, this T-shaped flat chamber may link with the Yenisei–Khatanga rift along the northwest-trending Pyasina transform fault, which may have served as the principal magma conduit to the intermediate chamber. It then produced the differentiated mineralized intrusions that melted through the evaporites with in situ precipitation of massive, disseminated, and copper sulfide ore. The Noril’sk–Kharaelakh crustal fault may not relate to mineralization and possibly formed in response to late Mesozoic spreading in the Arctic Ocean.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.