Abstract
Bar and berm morphology characterize the seasonal beach evolution, and determine the protection against storm erosion as well as the touristic use of beaches. Thus, they are of particular interest for coastal management and engineering in the nearshore zone. This study used large-scale wave flume experiments to observe the transition from fully dissipative to fully reflective beach profile at a high level of detail. Starting from a post-storm profile generated under energetic waves, a very low energy wave condition caused dissipation of the outer and the inner bar, shoreline recovery, and berm accretion. Measurements revealed feedback between hydrodynamics and beach profile evolution with an onshore shift of the wave breaking location. As a result, the magnitude and cross-shore evolution of wave asymmetry-related bedload net onshore and suspended net offshore transport changed. The relative magnitudes of the two transport components and the way they shifted relative to each other caused the observed beach recovery. Additionally, a link between bar and berm morphology (surf-swash sand exchange) was observed. The shifting breakpoint enabled sustained, wave asymmetry-related onshore transport in the inner surf zone, feeding the berm accretion which occurred through advective swash zone processes including berm overwash.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.