Abstract

When wind blows over a water surface during a swell, it generates short-crested, three-dimensional waves that interact with the underlying flow field through a mechanism that ultimately increases the average energy. In the present work, two test cases in which wind is flowing following and opposing a swell are analysed with experiments and are compared with wind–waves-only and swell-only cases. The analysis of the free surface fluctuation and of the flow field, with the three components of fluid velocity measured at the same time through a stereo particle image velocimetry system, leads to an accurate quantification of the energy distribution, of the structure of the oscillating, fluctuating (due to wind–waves) and turbulent kinetic energy, without assumptions on the structure of the flow. The findings demonstrate that the transverse dynamics is a pivotal factor in the transfer of energy in the near-free surface domain, and elucidate the energy transfer between wind–waves and swell. The results also confirm the reduction of oscillating kinetic energy of the swell in the presence of short wind–waves, a process interpreted with different possible mechanisms. There is evidence of the enhancement of wind action in the presence of swell compared to that in the case of wind–waves-only, confirming that energy transfer from the wind to the sea is enhanced when wind flows over a swell. Consequently, when the fetch is influenced by swells generated or propagated from different regions, and during multi-peak sea storms, wave generation models should account for this amplification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.