Abstract
We present a local convergence analysis for a family of Maheshwari-type eighth-order methods in order to approximate a solution of a nonlinear equation. We use hypotheses up to the first derivative in contrast to earlier studies such as Cordero et al. (J Comput Appl Math 291(1):348–357, 2016), Maheshwari (Appl Math Comput 211:283–391, 2009), Petkovic et al. (Multipoint methods for solving nonlinear equations. Elsevier, Amsterdam, 2013) using hypotheses up to the seventh derivative. This way the applicability of these methods is extended under weaker hypotheses. Moreover the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples are also presented in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.