Abstract

We present a local convergence analysis of an optimal eighth-order family of Ostrowski like methods for approximating a locally unique solution of a nonlinear equation. Earlier studies [T. Lotfi, S. Sharifi, M. Salimi and S. Siegmund, A new class of three-point methods with optimal convergence and its dynamics, Numer. Algorithms 68 (2015) 261–288.] have shown convergence of these methods under hypotheses up to the eighth derivative of the function although only the first derivative appears in the method. In this study, we expand the applicability of these methods using only hypotheses up to the first derivative of the function. By this way the applicability of these methods is extended under weaker hypotheses. Moreover, the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples are also presented in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.