Abstract

Vertical drain assisted by vacuum and/or surcharge preloading is an effective method for improvement of soft ground with high water content. A large settlement will occur, and the water flow may deviate from the Darcy's law. The creep is also non-negligible in estimating the long-term settlement of such soft ground. To accurately predict the consolidation process, this study develops an axisymmetric finite strain consolidation model based on Barron's free-strain theory incorporating the creep, radial and vertical flows, non-Darcian flow law, and void ratio-dependent hydraulic conductivity during the consolidation process. First, to mathematically validate the model and highlight the new model's features, the existing model not considering the creep and the non-Darcy flow is also adopted as a reference for comparison based on a benchmark simulation. Then, Rowe cell tests involving non-Darcian flow are simulated by the new model to experimentally validate the predictive performance. Furthermore, the model is applied to simulate the consolidation process of a long-term monitoring embankment to examine the applicability of the model for engineering practice. All results demonstrate that the model is capable of accurately describing the consolidation of soft soils with vertical drains under combined loading with features of creep and non-Darcy flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call