Abstract
Innovation in the use of geosynthetics in roadway applications has resulted in the development of several different products, such as asphalt reinforcement geogrids and paving mats to minimize reflective cracks and limit moisture infiltration. For a proper performance of the reinforced asphalt systems, an adequate interface bond strength has proven to be crucial. However, the influence of the different paving interlayer characteristics, combined with tack coat types, and tack coat rates on the interface bond strength remains unclear. In this study, a comprehensive program of interface shear tests was conducted using Leutner shear device and laboratory-prepared reinforced asphalt specimens. The program involved eight geosynthetic types, two tack coat types, and three application rates. Results revealed that the geosynthetic type, tack coat type and rate, as well as the interactions among the parameters significantly affect interface bond strength. Multiple linear regression analysis indicated that geogrid aperture area, geosynthetic thickness, geotextile backing thickness, and the presence of bitumen coating are the most affecting parameters on bond strength. A predictive model for the bond strength based on geosynthetic parameters is presented. Based on literature results for specimens extracted from the field, the proposed predictive models were found to adequately predict interface bond strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.