Abstract
ABSTRACT Introduction: Ankle sprains are frequent in sports activities and can lead to joint instability with clinical and performance consequences. Sudden ankle inversion platforms have been used to study the mechanism of ankle sprain. Objectives: To test a static platform that simulates the movement of ankle sprain (sudden inversion) in soccer players. Methods: A platform was developed to perform the sudden movement of an ankle sprain dissociated in three axes: inversion, plantar flexion, and medial rotation. A computer program was also created to read the angular velocity and the time to reach the maximum amplitude of the three axes of movement, synchronized with the platform movements. Thirty soccer players without ankle sprains were evaluated on the sudden inversion platform. Each athlete performed 10 randomly initiated tests, with five per leg. Results: There was no statistical difference in angular velocity or time to reach maximum range of motion of plantar flexion and medial rotation between the tests. During the tests, the angular velocity of the inversion increased. Conclusion: The sudden static platform evaluated the movements performed by the ankle during the sprain reliably in the 10 tests with no difference in the mechanical behavior. Level of evidence I; Therapeutic studies - Investigation of treatment outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.