Abstract

In this paper, an autonomous UCAV air combat maneuvering decision method based on LSHADE-TSO optimization in a model predictive control framework is proposed, along with enemy trajectory prediction. First, a sliding window recursive prediction method for multi-step enemy trajectory prediction using a Bi-LSTM network is proposed. Second, Model Predictive Control (MPC) theory is introduced, and when combined with enemy trajectory prediction, a UCAV maneuver decision model based on the MPC framework is proposed. The LSHADE-TSO algorithm is proposed by combining the LSHADE and TSO algorithms, which overcomes the problem of traditional sequential quadratic programming falling into local optimum when solving complex nonlinear models. The LSHADE-TSO-MPC air combat maneuver decision method is then proposed, which combines the LSHADE-TSO algorithm with the MPC framework and employs the LSHADE-TSO algorithm as the optimal control sequence solver. To validate the effectiveness of the maneuvering decision method proposed in this paper, it is tested against the test maneuver and the LSHADE-TSO decision algorithm, respectively, and the experimental results show that the maneuvering decision method proposed in this paper can beat the opponent and win the air combat using the same weapons and flight platform. Finally, to demonstrate that LSHADE-TSO can better exploit the decision-making ability of the MPC model, LSHADE-TSO is compared to various optimization algorithms based on the MPC model, and the results show that LSHADE-TSO-MPC can not only help obtain air combat victory faster but also demonstrates better decision-making ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.