Abstract

AbstractIt is known that there is a class of nonlinear systems that cannot be stabilized by a continuous time‐invariant feedback. This class includes systems with interest in practice, such as nonholonomic systems, frequently appearing in robotics and other areas. Yet, most continuous‐time model predictive control (MPC) frameworks had to assume continuity of the resulting feedback law, being unable to address an important class of nonlinear systems. It is also known that the open‐loop optimal control problems that are solved in MPC algorithms may not have, in general, a continuous solution. Again, most continuous‐time MPC frameworks had to artificially assume continuity of the optimal controls or, alternatively, impose some demanding assumptions on the data of the optimal control problem to achieve the desired continuity. In this work we analyse the reasons why traditional MPC approaches had to impose the continuity assumptions, the difficulties in relaxing these assumptions, and how the concept of ‘sampling feedbacks’ combines naturally with MPC to overcome these difficulties. A continuous‐time MPC framework using a strictly positive inter‐sampling time is argued to be appropriate to use with discontinuous optimal controls and discontinuous feedbacks. The essential features for the stability of such MPC framework are reviewed. Copyright © 2003 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.