Abstract
The typical response of plant organs to gravistimulation is differential growth that leads to organ bending. If the gravitropic stimulus is withdrawn, endogenous compensation of the graviresponse and subsequent straightening occur in some plants. For instance, autonomic straightening of Lepidium roots occurs when gravitropically-curved rootsare rotated on a clinostat (Stankovi et al., 1998a). To determine whether endogenous compensation of the graviresponse also occurs in space, microgravity-grown cress roots were laterally centrifuged in-flight and then returned to microgravity using Biorack hardware on a shuttle mission (STS-81). The cress roots were centrifuged at 4 different g-doses (0.1 x g and 1 x g for 15 or 75 min). All four treatments yielded varying degrees of root curvature. Upon removal from the centrifuge, roots in all four treatments underwent subsequent straightening in microgravity. This straightening resulted from a loss of gravitropic curvature in older regions of the root and the coordinated alignment of new growth. These results show that both microgravity and clinostat rotation on Earth are equivalent in stimulus withdrawal with respect to the induction of endogenous compensation of the curvature. Cress roots are the only plant organ shown to undergo compensation of the curvature in both microgravity and on a clinostat. The compensation of graviresponse in space rules out the hypothesis that the endogenous root straightening ("autotropism") represents a commitment to a pre-stimulus orientation with respect to gravity and instead suggests that there is a default tendency towards axiality following a withdrawal of a g-stimulus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advances in space research : the official journal of the Committee on Space Research (COSPAR)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.