Abstract
The types and quantities of microorganisms in activated sludge are directly related to the stability and efficiency of sewage treatment systems. This paper proposes a sludge microorganism detection method based on microscopic phase contrast image optimisation and deep learning. Firstly, a dataset containing eight types of microorganisms is constructed, and an augmentation strategy based on single and multisamples processing is designed to address the issues of sample deficiency and uneven distribution. Secondly, a phase contrast image quality optimisation algorithm based on fused variance is proposed, which can effectively improve the standard deviation, entropy, and detection performance. Thirdly, a lightweight YOLOv8n-SimAM model is designed, which introduces a SimAM attention module to suppress the complex background interference and enhance attentions to the target objects. The lightweight of the network is realised using a detection head based on multiscale information fusion convolutional module. In addition, a new loss function IW-IoU is proposed to improve the generalisation ability and overall performance. Comparative and ablative experiments are conducted, demonstrating the great application potential for rapid and accurate detection of microbial targets. Compared to the baseline model, the proposed method improves the detection accuracy by 12.35% and hastens the running speed by 37.9 frames per second while evidently reducing the model size.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have