Abstract

AbstractThe research presented in this article focuses on expanding and deepening the prior research of a low‐cost terminal guidance system in a previous paper entitled “Design, implementation and verification of a low‐cost terminal guidance system for small fixed‐wing UAVs.” An automatic terminal guidance workflow is specially designed for an individual in a small fixed‐wing unmanned aerial vehicle (SUAV) swarm. The extended work around the proposed workflow primarily involves upgrading onboard hardware modules to improve sensor accuracy and environmental adaptability, the imaging performance of the seeker, as well as the computational capability of the image processor, applying object detection to replace the human‐in‐the‐loop function and adopting the integral proportional guidance law in the vertical direction to reduce the required overload and obtain a larger impact angle. Furthermore, we conducted several field tests on two types of SUAV against a stationary target on the ground in a field scenario. The experiments have generated valuable onboard image data and SUAV status information, all of which are aligned in the time domain. The only remaining data sets that support the findings of this study are available from the corresponding author. Our study into automatic terminal guidance has yielded a solution of the automatic strap‐down monocular terminal guidance problem of individual SUAVs. The field trials of a single SUAV demonstrate the robustness and efficiency of the proposed automatic terminal guidance methodology and lays a foundation for the future SUAVs' cooperative attack test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.